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A semiparametric statistical method is applied to spacecraft sensor
data and spacecraft sensor residual data. The method stipulates
a reference distribution and deviations from it. The problem is to
estimate the reference distribution and the distorted distributions
from all available data from all the sources under consideration. The
problem can be solved by assuming a distortion form and indepen-
dent data.

INTRODUCTION

Suppose that m instruments I1, ..., Iq, Im all measure the same or related quan-
tities and that Im is chosen as the “reference instrument”. The other instruments
are thought of as “distortions” in the sense that the probability distributions of their
data are distortions of the probability distribution of the reference data. The prob-
lem is to combine the information from all the instruments in order to construct an
improved estimate of the reference (true) probability distribution and of the deviant
distributions.

The instruments we have in mind include, but certainly are not limited to, sensors
such as gyroscopes, star trackers, sun sensors, earth sensors, and other attitude and
navigation sensors. The method can be applied to space borne instruments where
ground truth is taken as the reference, or to residual data obtained after onboard
sensors are calibrated. In this work, the method is applied to measurements from
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the Rossi X-Ray Timing Explorer (RXTE) star trackers, and residual data from the
calibrated Upper Atmosphere Research Satellite (UARS) earth sensors.

The present work is based on Fokianos, Kedem, Qin, Haferman, and Short (Ref.
1), Fokianos, Kedem, Qin, Short (Ref. 2), and Kedem, Wolff, and Fokianos (Ref. 3).

STATISTICAL FORMULATION

We describe briefly the main statistical ideas and introduce our notation. Except
for an assumed distortion form and independent data, nothing else is assumed.

Let xj = (xj1, . . . , xjnj
)′ represent independent observations from instrument Ij,

where xji has an unknown probability density gj(x). Then, holding g ≡ gm as a
reference, again unknown, we assume that each of the q = m−1 probability densities
g1(x), ..., gq(x) is a tilted form of g(x),

gj(x) = exp(αj + βjh(x))g(x), j = 1, ..., q (1)

where αj depends on βj. Quite a few distributions satisfy (1) including the normal,
lognormal, and gamma distributions.4 More precisely, in the normal case when each
datum has the same variance, the regression function is h(x) = x, whereas for the
corresponding lognormal and for certain gamma populations h(x) = log(x). Another
example is provided by multinomial logistic regression.2 Distortions such as (1) have
been studied in Refs. 5 and 6, while the validation problem of model (1) has been
studied in Ref. 7 for the special case m = 2 using a generalized moments specification
test.

When β1 = · · · = βq = 0, also α1 = · · · = αq = 0, then there are no distor-
tions, that is, all the sensors give the same identically distributed data and we have
g1(x) = g2(x) = · · · = gq(x) = g(x). When some βj are not equal to 0, the sensors
deviate statistically from the benchmark or reference sensor. Thus, βj 6= 0 points to a
difference between Ij and the reference sensor. In the present context, calibration of
Ij means that gj(x) must be multiplied by exp(−αj−βjh(x)) to increase its reliability.

Let n = n1 + · · ·+nq +nm, where nj is the size of xj, and ρj = nj/nm, j = 1, ..., q.
Combine all the data in the vector t = (x′1, ...,x

′
q,x

′
m)′ = (t1, ..., tn)′. Interestingly, the

relative sample sizes ρj play an important role in estimation and hypothesis testing.
It is also convenient to introduce the notation,

wj(t) = exp(αj + βjh(t)), j = 1, ..., q.

Estimation

Using the combined data t = (t1, ..., tn)′, the semiparametric estimation of the
reference g(x) and all the distortion parameters α = (α1, ..., αq)

′, β = (β1, ..., βq)
′,
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and the hypothesis test that there are no distortions H0 : β1 = · · · = βq = 0, have
been undertaken in Ref. 2 using empirical likelihood8 which leads to surprisingly
simple procedures that are useful and easy to implement.

The reference probability density (pdf) g(x) is estimated by a discrete probability
distribution p̂i = p̂(ti) at every ti, i = 1, ..., n. The rationale behind this is that we
really are estimating the corresponding cumulative distribution function (cdf)

G(x) =

∫ x

−∞
g(u)du

by a step function Ĝ(x) with jumps at the ti’s, and p̂i is the corresponding probability
mass function.

Notice that g(x) = gm(x) is estimated from the combined data t and not just
from the mth sample xm1, ..., xmnm .

A maximum likelihood estimator of G(x) can be obtained by maximizing the
likelihood over the class of step cdf’s with jumps at the observed values t1, ..., tn.
Accordingly, if pi = dG(ti), i = 1, .., n, the likelihood becomes

L(α,β, G) =
n∏

i=1

pi

n1∏
j=1

exp(α1 + β1h(x1j)) · · ·
nq∏

j=1

exp(αq + βqh(xqj)) (2)

By maximizing (2) with respect to the pi subject to the constraints that the pi

and all the corresponding distortions sum up to 1 we obtain the estimates

p̂i =
1

nm

· 1

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρq exp(α̂q + β̂qh(ti))
(3)

and therefore, with I(B) the indicator of the event B,

Ĝ(t) =
1

nm

·
n∑

i=1

I(ti ≤ t)

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρq exp(α̂q + β̂qh(ti))
(4)

The estimates of the αj and βj are solutions of score equations in terms of a profile
log-likelihood l (see Ref. 2) for j = 1, ..., q,

∂l

∂αj

= −
n∑

i=1

ρjwj(ti)

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)
+ nj = 0

∂l

∂βj

= −
n∑

i=1

ρjh(ti)wj(ti)

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)
+

nj∑
i=1

h(xji) = 0 (5)
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The solutions α̂ = (α̂1, ..., α̂q)
′, β̂ = (β̂1, ..., β̂q)

′, are known to have an asymptotic
normal distribution with mean (α, β), and a 2q × 2q covariance matrix Σ/n, where

Σ = S−1VS−1 (6)

and

V ≡ V ar

[
1√
n
∇l(α,β)

]

− 1

n
∇∇′l(α, β) → S, n →∞.

Hypothesis Testing

The hypothesis that all the probability distributions corresponding to the different
instruments are the same,

H0 : β1 = · · · = βq = 0

can be tested by a statistic which depends on n, the variance of h(t) with respect to
the reference distribution g(x) which we can approximate with the help of (3), β̂, and
the sample size ratios ρj.

Let A11 be a q × q matrix whose jth diagonal element is

ρj[1 +
∑q

k 6=j ρk]

[1 +
∑q

k=1 ρk]2

and otherwise for j 6= j′, the jj′ element is

−ρjρj′

[1 +
∑q

k=1 ρk]2

Then, under H0,

X1 = nVar[h(t)]β̂
′
A11β̂ (7)

is approximately distributed as χ2(q), and H0 is rejected for large values of X1 =

nVar[h(t)]β̂
′
A11β̂.

In practice, the Var[h(t)] needed for evaluating X1 is estimated from

n∑
i=1

h2(ti)p̂i −
(

n∑
i=1

h(ti)p̂i

)2

. (8)

Simulations indicate that under normality, the test based on X1 is not dominated
by the common F -test, while it is more powerful than the F -test for non-normal
data, provided h(x) is known or chosen wisely. Recall that for normal data with
equal variance h(x) = x, and for certain skewed data, h(x) = log(x) is the proper
choice. The general linear hypothesis is discussed in Ref. 2.
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ILLUSTRATION OF THE METHOD

The method is useful when we wish to detect differences or study similarities be-
tween probability distributions. Experience shows that the method is quite sensitive
and it can detect even small distributional differences. It is also useful for estimating
probabilities from the combined data obtained from many sources. This is illustrated
in terms of simulated and real data.

Simulated Normal Data

To get an idea as to the sensitivity of the method we employ simulated normal
(Gaussian) data with h(x) = x, m = 3, and sample sizes n1 = 200, n2 = 300, n3 = 250,
for N(µ1, 1), N(µ2, 1), N(0, 1), holding N(0, 1) as the reference and varying µ1, µ2.
Greater values of µ1, µ2 result in a greater distortion. From Table 1, very small
deviations or distortions are more difficult to detect as expressed by a relatively
large p-value, say greater than 0.05. The situation improves greatly as the distortion
becomes more pronounced leading to small p-values, much smaller than the nominal
0.05, or equivalently larger values of X1.

Table 1 Sensitivity of the semiparametric method measured by p-value
for m = 3, q = 2 and normal data with different means µ1, µ2 and variance
1. The reference distribution is N(0, 1).

µ1, µ2 α̂1 β̂1 α̂2 β̂2 X1 p-value
0.01, 0.00 0.000 -0.008 -0.002 -0.063 0.640 0.726098
0.01, 0.05 0.001 0.064 -0.002 0.133 2.554 0.278895

-0.10, 0.05 -0.008 -0.105 0.000 0.005 3.052 0.212731
-0.10, 0.10 -0.002 -0.040 -0.008 0.180 7.645 0.021869
-0.10, 0.20 -0.009 -0.138 -0.027 0.230 17.406 0.000166
0.20, 0.30 -0.002 0.073 -0.073 0.387 24.332 0.000005
1.00, 0.10 -0.470 0.996 -0.008 0.182 127.764 0.000000

It is important to note that the choice h(x) = x is appropriate when the variances
of the various data sets are not drastically different, but when the latter is the case,
h(x) = x2 may be appropriate. This is exactly the case for Gaussian (normal) data
sets with substantially different variances. To illustrate this, consider the case of
Gaussian data N(0, 2), N(0, 4), N(0, 1) where N(0, 1) is the reference pdf. Let the
sample sizes be 200, 300, 250, respectively. Then with h(x) = x2, we obtained

(α1, β1, α2, β2) = (−0.367, 0.258,−0.628, 0.353)
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with a very small p-value of 1.739686e-08, as it should since the variances are very
different (i.e. “different sensors”). On the other hand, with h(x) = x,

(α1, β1, α2, β2) = (−0.006,−0.048,−0.002, 0.077)

with a much larger p-value of 0.09459638 from which we may conclude erroneously
at level 0.05 that the sensors are “the same” when they are not.

It is interesting to compare the theoretical SE’s obtained from (6) and those
given explicitly in Ref. 2 with simulation results. Again consider the case N(0, 2),
N(0, 4) and N(0, 1) with respective sample sizes 200, 300, 250, and holding N(0, 1)
as reference. The SE’s results with 200 runs which gave 200 estimates for each of
α̂1,β̂1,α̂2,β̂2 are given in Table 2. There the estimated standard error of α̂1 is the
sample SE obtained from 200 values of α̂1, etc. We see that the theoretical (“Theory”)
and estimated (“Est.”) SE’s are fairly close. Similar close results are obtained with
h(x) = log(x) for lognormal data.

Table 2 Comparison of theoretical versus estimated SE’s of α̂1,β̂1,α̂2,β̂2 for
h(x) = x2 using N(0, 2), N(0, 4), N(0, 1) data.

SE(α̂1) SE(β̂1) SE(α̂2) SE(β̂2)
Theory Est. Theory Est. Theory Est. Theory Est.
0.069 0.069 0.056 0.054 0.078 0.075 0.056 0.052

Sensor Data

We apply the semiparametric method to the x-coordinates of two star trackers,
denoted as star1 and star2, to study how different the corresponding probability
distributions are. Two random samples of size 500 each were obtained from each
instrument and the corresponding probability distributions (3) were estimated from
the combined data. Holding star2 as the reference, the results with h(x) = x are
given in Table 3. Certainly, the two data sets are very different as expressed by very
large parameter values and a zero p-value. However, when the samples come from the
same instrument the parameter estimates and their standard errors decrease and the
p-values increase dramatically. Thus, judging by the p-values, the method identifies
the samples correctly.

Next we compare in Figures 1 and 2 the estimated probability densities with each
other and with the corresponding histograms. It should be emphasized that both
pdf’s were obtained from the combined data set whereas each histogram is from a
particular single set, either from star1 or star2, but not both. Figure 2 illustrates
clearly the difference between the pdf’s.
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Figure 1 Estimated reference pdf (top) and its distortion (bottom) and
the corresponding histograms. h(x) = x
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Figure 2 Estimated reference pdf, g(x), and its distortion for the star
tracker data.
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Table 3 Sensitivity of the semiparametric method measured by p-value
for m = 2, q = 1 for star trackers star1 and star2, holding star2 as reference.
The values in parentheses are standard errors obtained from (6).

Source1 Source2 α̂1 β̂1 X1 p-value
Star1 Star2 -2438.56 2450.71 55906.500 0.000

(599.43) (602.11)
Star1 Star1 20.78 -20.81 0.090 0.762

(68.26) (68.36)
Star2 Star2 -0.92 0.94 0.009 0.924

(9.69) (9.86)

The estimated reference cdf Ĝ(x) belonging to star2 and given in (4) is shown
in Figure 3. From Ĝ(x), the probability that an x-coordinate value is less that 0.98
is Ĝ(0.98) = 0.326, and the probability of a value falling between 0.98 and 0.99 is
Ĝ(0.99) − Ĝ(0.98) = 0.586, and so on. These probabilities for star1 are practically
zero: Ĝ1(0.98) = 1.15 × 10−30, and Ĝ1(0.99) − Ĝ1(0.98) = 1.28 × 10−11, and so on.
This can also be seen from Figure 2. Notice that Ĝ1(x) is obtained by multiplying
(3) by the distortion and proceeding as in (4) with the distorted cdf replacing the
reference cdf.

Our next example deals with the residual data from the x-axis for the two UARS
earth sensors referred to as “esa1” and “esa2”. The residual is computed as the differ-
ence between the measured Earth vector and the expected Earth vector, both in the
spacecraft body coordinates. More precisely, the residual is the result of calibration,
the process which estimates all the errors in the measured vector and then removes
them. The residual is what is left after all the calibration parameters are removed.
If the calibration of the sensors is perfect, and the vectors are not corrupted by any
noise, each data set would be zero. If the calibration is perfect, the data would be
“white” noise, with zero mean.

Teting for white noise refers to a joint distribution property, while our method
produces inference about marginal distributions when the data comes from many
sources. Thus our method is not suitable for white noise testing per se. Still, it is
interesting to measure the difference between the distributions of the two “white”
noise sources and to get an idea of how probable it is to realize values around zero in
the two cases. This, however, is accomplished with our method. Thus taking esa2 as
the reference instrument, and using h(x) = x, we have (α̂1, β̂1) = (−0.149, 489.395)
with corresponding standard errors (0.026, 66.612) and a p-value of 6 × 10−15. The
estimated reference pdf (the estimated pdf of data from esa2) and its distortion (the
estimated pdf of data from esa1) are shown in Figure 4. Our analysis shows that
these two distributions are very different and yet both are supported on intervals
about the zero value. That is, the probability of a residual being between -0.002 and
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Figure 3 Estimated reference cdf, G(x), of star tracker 2 when h(x) = x.

0.003 is nearly 1, and this probability was estimated from the combined residual data
from both esa1 and esa2.

SUMMARY

A semiparametric statistical method based on the empirical likelihood (2) was ap-
plied to spacecraft sensor data. The method combines the data from all the sources in
estimating the probability distribution associated with each data source. The remark-
able fact is that probability distributions are derived as a result of an optimization
problem assuming a distortion or tilt form and independent data. Nothing else is
assumed. The form of the distortion may be generalized to the case where β1 is a
vector and h(x) is vector valued. This generalization is studied elsewhere.

The preliminary results here were limited to two different sensors, and different
types of data, namely observed star data and Earth sensor residual data. In the
future, this method could be applied to sensor data to determine deviations between
identical sensors, to give an indication of an impending sensor failure, for example.
Also, additional residual data could be tested to determine the effectiveness of a
calibration procedure. Additionally, the method could be applied to navigation data
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Figure 4 Estimated reference pdf g(x) and its distortion for the UARS
data. h(x) = x.

to determine the statistical properties of transmitted ranging data, or data processed
by onboard receivers.
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